
284 Chapter 6. Eigenvalues and Eigenvectors 

This section will explain how to compute the x 's and A'S. It can come early in the course 
because we only need the determinant of a 2 by 2 matrix. Let me use det( A - AI) = 0 to 
find the eigenvalues for this first example, and then derive it properly in equation (3). 

Example 1 The matrix A has two eigenvalues A = 1 and A = 1/2. Look at det( A - AI): 

A = [:~ :~ ] det [:~ - A :~ _ A] = A 2 
- ~ A + ~ = (A - 1) (A - ~) . 

I factored the quadratic into A-I times A - ~, to see the two eigenvalues A = 1 and 

A = !. For those numbers, the matrix A - AI becomes singular (zero determinant). The 

eigenvectors x 1 and x 2 are in the nullspaces of A - I and A - ~ I . 
(A - I)x 1 = 0 is Ax 1 = X 1 and the first eigenvector is (.6 • .4). 
(A - ~I)X2 = 0 is AX2 = ~X2 and the second eigenvector is (1, -1): 

and AX1 = [:~ 

and AX2 = [:~ 

:;] [:!] = Xl (Ax = x means that Al = 1) 

'.7
3

] [_11] -- [_'.55] (this is ~ X2 so A2 = ~). 

If x 1 is multiplied again by A, we still get x 1. Every power of A will give An X 1 = Xl. 

Multiplying X2 by A gave ~X2' and if we multiply again we get (~)2 times X2. 

When A is squared, the eigenvectors stay the same. The eigenvalues are squared. 

This pattern keeps going, because the eigenvectors stay in their own directions (Figure 6.1) 
and never get mixed. The eigenvectors of A 100 are the same x 1 and X2. The eigenvalues 
of A 100 are 1100 = 1 and (~)100 = very small number. 

A=1 

A =.5 

AX1 =X1 = [:~J 

A 2 = .25 

AX 2'= A2X 2 = [-:~J 

Figure, 6.1: The eigenvectors keep their directions. A 2 has eigenvalues 12 and (.5)2. 

Other vectors do change direction. But all other vectors are combinations of the two 
eigenvectors. The first column of A is the combination x 1 + (.2)X2: 

Separate into eigenvectors [:~] = Xl + (.2)X2 = [:!] + [_:~]. (1) 
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Multiplying by A gives (.7, .3), the first column of A2. Do it separately for x I and C.2)X2' 
Of course Ax I = X 1. And A multiplies x 2 by its eigenvalue!: 

Multiply each Xi by Ai A [:~] = [:~] is Xl + ~(.2)X2 = [:~] + [-:~J. 
Each eigenvector is multiplied by its eigenvalue, when we multiply by A. We didn't need 
these eigenvectors to find A 2. But it is the good way to do 99 multiplications. At every step 
Xl is unchanged and X2 is multiplied by (!), so we have C!)99: 

1 [ 6] [very] isreally Xl + (.2)("2)99 X2 = :4 + small . 
vector 

This is the first column of A 100. The number we originally wrote as .6000 was not exact. 
We left out (.2)(!)99 which wouldn't show up for 30 decimal places. 

The eigenvector X I is a "steady state" that doesn't change (because)"1 = 1). The 
eigenvector X2 is a "decaying mode" that virtually disappears (because A2 = .5). The 
higher the power of A, the closer its columns approach the steady state. 

We mention that this particular A is a Markov matrix. Its entries are positive and 
every column adds to 1. Those facts guarantee that the largest eigenvalue is A = 1 (as we 
found). Its eigenvector Xl = (.6,.4) is the steady state-which all columns of Ak will 
approach. Section 8.3 shows how Markov matrices appear in applications like Google. 

For projections we can spot the steady state (A = 1) and the nUllspace (A = 0). 

Example2 ~ 

Its eigenvectors are x 1 = (1, 1) and x 2 = (1, -1). For those vectors, P X 1 = X I (steady 
state) and P x 2 = 0 (nullspace). This example illustrates Markov matrices and singular 
matrices and (most important) symmetric matrices. All have special A's and x 's: 

1. Each column of P = [:~ :~] adds to 1, so A = 1 is an eigenvalue. 

2. P is singular, so A = 0 is an eigenvalue. 

3. P is symmetric, so its eigenvectors (1, 1) and (1, -1) are perpendicular. 

The only eigenvalues of a projection matrix are 0 and 1. The eigenvectors for A = 0 
(which means P X = Ox) fill up the nullspace. The eigenvectors for A = 1 (which means 
P x = x) fill up the column space. The nullspace is projected to zero. The column space 
projects onto itself. The projection keeps the column space and destroys the nullspace: 

Project each part v = [_~] + [~] projects onto Pv = [~] + [~]. 
Special properties of a matrix lead to special eigenvalues and eigenvectors. 

That is a major theme of this chapter (it is captured in a table at the very end). 
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Projections have A = 0 and 1. Permutations have all IAI = 1. The next matrix R (a 
reflection and at the same time a permutation) is also special. 

Example 31~e.t~n~~ti<)gmatti~R·· ....•. t~~]I1~$ej~eI)Y~lpe~ l~md-i .. 

The eigenvector (1, 1) is unchanged by R. The second eigenvector is (1, -1 )-its signs 
are reversed by R. A matrix with no negative entries can still have a negative eigenvalue! 
The eigenvectors for R are the same as for P, because reflection = 2(projection) - I: 

R = 2P-1 [ 0 1]=2[.5 .5]_[1 0]. 
10 .5.5 01 

(2) 

Here is the point. If P x = AX then 2P x = 2AX. The eigenvalues are doubled when 
the matrix is doubled. Now subtract Ix = x. The result is (2P - I)x = (2A - I)x. 
When a matrix is shifted by I, each A is shifted by I. No change in eigenvectors. 

Projection onto blue line Reflection across line • RX2 = -X2 

Figure 6.2: Projections P have eigenvalues 1 and O. Reflections R have A = 1 and -I. 
A typical x changes direction, but not the eigenvectors x 1 and x 2. 

Key idea: The eigenvalues of Rand P are related exactly as the matrices are related: 

The eigenvalues of R = 2P - I are 2(I) - I = 1 and 2(0) - 1 = -1. 

The eigenvalues of R2 are A2. In this case R2 = I. Check (If = 1 and (_1)2 = 1. 

The Equation for the Eigenvalues 

For projections and reflections we found A'S and x's by geometry: P x = x, P x = 0, 
Rx = -x. Now we use determinants and linear algebra. This is the key calculation in 
the chapter-almost every application starts by solving Ax = AX. 

First move AX to the left side. Write the equation Ax = AX as (A - AI)X = O. The 
matrix A - AI times the eigenvector x is the zero vector. The eigenvectors make up the 
nullspace of A - AI. When we know an eigenvalue A, we find an eigenvector by solving 
(A -AI)X = o. 

Eigenvalues first. If (A - AI)X = 0 has a nonzero solution, A - AI is not invertible. 
The determinant of A -11 must be zero. This is how to recognize an eigenvalue A: 
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Ei{;jenvaluesThe nuD1ber) .. \isaneig~nvalUe6fAifand oriJyifA --, XI is singular: 

det(A - AI) = O. 

This "characteristic polynomial" det(A - AI) involves only A, not x. When A is n by n, 
equation (3) has degree n. Then A has n eigenvalues (repeats possible!) Each A leads to x: 

For eachelgenyaluelsolve (A. -·AJ)X .- ,0 or Ax .·· ... ·.·AX . tofilld an eigenv¢¢tQr x '. 

Example 4 A = [~ ;] is already singular (zero determinant). Find its A'S and x's. 

When A is singular, A = 0 is one of the eigenvalues. The equation Ax = Ox has 
solutions. They are the eigenvectors for A = O. But det(A - AI) = 0 is the way to find all 
A'S and x's. Always subtract AI from A: 

[I-A 2] Subtract A/rom the diagonal to find A - AI = 2 4 _ A . (4) 

Take the determinant "ad - bc" 0/ this 2 by 2 matrix. From 1 - A times 4 - A, 
the "ad" part is A 2 - SA + 4. The "be" part, not containing A, is 2 times 2. 

Set this determinant 12 - 51 to zero. One solution is A = 0 (as expected, since A is 
singular). Factoring into A times A - 5, the other root is A = 5: 

det(A - AI) = A 2 
- SA = 0 yie1dstheeigenvaloes Al = o and A2 = 5 •. 

Now find the eigenvectors. Solve (A - AI)x = 0 separately for Al = 0 and A2 = 5: 

(A - OI)x = U ~][;] = [~] yields an eigenvector[~l [Jl fOrAl = 0 

(A - 5I)x = [-~ _ i] [~] = [~] yields an eigenvector [~1 [i] for A2 = 5. 

The matrices A - 01 and A-51 are singular (because 0 and 5 are eigenvalues). The 
eigenvectors (2, -1) and (1,2) are in the nullspaces: (A - AI)x = 0 is Ax = AX. 

We need to emphasize: There is nothing exceptional about A = O. Like every other 
number, zero might be an eigenvalue and it might not. If A is singular, it is. The eigenvec­
tors fill the nullspace: Ax = Ox = O. If A is invertible, zero is not an eigenvalue. We shift 
A by a multiple of I to make it singular. 

In the example, the shifted matrix A-51 is singular and 5 is the other eigenvalue. 
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Summary To solve the eigenvalue problem for an n by n matrix, follow these steps: 

A note on the eigenvectors of 2 by 2 matrices. When A - AI is singular, both rows are 
multiples of a vector (a, b). The eigenvector is any multiple of (b, -a). The example had 
A = 0 and A = 5: 

A = 0 : rows of A - 01 in the direction (1,2); eigenvector in the direction (2, -1) 

A = 5 : rows of A-51 in the direction (-4,2); eigenvector in the direction (2,4). 

Previously we wrote that last eigenvector as (1,2). Both (1,2) and (2,4) are correct. 
There is a whole line of eigenvectors-any nonzero multiple of x is as good as x. 
MATLAB's eig(A) divides by the length, to make the eigenvector into a unit vector. 

We end with a warning. Some 2 by 2 matrices have only one line of eigenvectors. 
This can only happen when two eigenvalues are equal. (On the other hand A = I has 
equal eigenvalues and plenty of eigenvectors.) Similarly some n by n matrices don't have 
n independent eigenvectors. Without n eigenvectors, we don't have a basis. We can't write 
every v as a combination of eigenvectors. In the language of the next section, we can't 
diagonalize a matrix without n independent eigenvectors. 

Good News, Bad News 

Bad news first: If you add a row of A to another row, or exchange rows, the eigenvalues 
usually change. Elimination does not preserve the A'S. The triangular U has its eigenvalues 
sitting along the diagonal-they are the pivots. But they are not the eigenvalues of A! 
Eigenvalues are changed when row 1 is added to row 2: 

U = [~ ~] has A = 0 and A = l' A = [1 3] , 2 6 has A = 0 and A = 7. 

Good news second: The product Al times A2 and the sum Al + A2 can be found quickly 
from the matrix. For this A, the product is 0 times 7. That agrees with the determinant 
(which is 0). The sum of eigenvalues is 0 + 7. That agrees with the sum down the main 
diagonal (the trace is 1 + 6). These quick checks always work: 

The product of the n eigenvalues equals the determinant. 
The sum of the n eigenvalues equals the sum of the n diagonal entries. 
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The sum of the entries on the main diagonal is called the trace of A: 

Al + A2 + ... + An = trace = all + a22 + ... + ann. 

Those checks are very useful. They are proved in Problems 16-17 and again in the next 
section. They don't remove the pain of computing A'S. But when the computation is wrong, 
they generally tell us so. To compute the correct A'S, go back to det(A - AI) = O. 

The determinant test makes the product of the A'S equal to the product of the pivots 
(assuming no row exchanges). But the sum of the A'S is not the sum of the pivots-as the 
example showed. The individual A's have almost nothing to do with the pivots. In this new 
part of linear algebra, the key equation is really nonlinear: A multiplies x. 

Why do the eigenvalues of a triangular matrix lie on its diagonal? 

Imaginary Eigenvalues 

One more bit of news (not too terrible). The eigenvalues might not be real numbers. 

After a rotation, no vector Q x stays in the same direction as x (except x = 0 which is 
useless). There cannot be an eigenvector, unless we go to imaginary numbers. Which we 
do. 

To see how i can help, look at Q 2 which is - I. If Q is rotation through 90°, then 
Q2 is rotation through 180°. Its eigenvalues are -1 and -1. (Certainly -Ix = -Ix.) 
Squaring Q will square each A, so we must have A 2 = -1. The eigenvalues of the 90° 
rotation matrix Q are +i and -i, because i 2 = -1. 

Those A'S come as usual from det(Q - AI) = O. This equation gives A2 + 1 = O. 
Its roots are i and -i. We meet the imaginary number i also in the eigenvectors: 

Complex 
eigenvectors 

and [O-I][i] .[i] 1 0 I =1 1 . 

Somehow these complex vectors Xl (1, i) and X2 = (i,I) keep their direction as 
they are rotated. Don't ask me how. This example makes the all-important point that real 
matrices can easily have complex eigenvalues and eigenvectors. The particular eigenvalues 
i and -i also illustrate two special properties of Q: 

1. Q is an orthogonal matrix so the absolute value of each A is IAI = 1. 

2. Q is a skew-symmetric matrix so each A is pure imaginary. 
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A symmetric matrix (AT A) can be compared to a real number. A skew-symmetric 
matrix (AT = -A) can be compared to an imaginary number. An orthogonal matrix 
(AT A = 1) can be compared to a complex number with IAI = 1. For the eigenvalues those 
are more than analogies-they are theorems to be proved in Section 6.4. 

The eigenvectors for all these special matrices are perpendicular. Somehow (i, I) and 
(1, i) are perpendicular (Chapter 10 explains the dot product of complex vectors). 

Eigshow in MATLAB 

There is a MATLAB demo (just type eigshow), displaying the eigenvalue problem for a 2 
by 2 matrix. It starts with the unit vector x = (1,0). The mouse makes this vector move 
around the unit circle. At the same time the screen shows Ax, in color and also moving. 
Possibly Ax is ahead of x. Possibly Ax is behind x. Sometimes Ax is parallel to x. At 
that parallel moment, Ax = AX (at x land X2 in the second figure). 

y = (0,1) 
-... A = [0.8 0.3] 

0.2 0.7 

\ 
J.\x = (0.8,0.2) 

x = (1,0) 

These are not eigenvectors 

\ 

--- -

./ 

AXl = Xl 

\ 

I 
I 

-- circle of x's 

Ax lines up with x at eigenvectors 

The eigenvalue A is the length of Ax , when the unit eigenvector x lines up. The built-in 
choices for A illustrate three possibilities: 0,1, or 2 directions where Ax crosses x. 

O. There are no real eigenvectors. Ax stays behind or ahead of x. This means the 
eigenvalues and eigenvectors are complex, as they are for the rotation Q. 

1. There is only one line of eigenvectors (unusual). The moving directions Ax and x 
touch but don't cross over. This happens for the last 2 by 2 matrix below. 

2. There are eigenvectors in two independent directions. This is typical! Ax crosses x 
at the first eigenvector Xl, and it crosses back at the second eigenvector x 2. Then 
Ax and x cross again at -x 1 and -X2. 

You can mentally follow x and Ax for these five matrices. Under the matrices I will 
count their real eigenvectors. Can you see where Ax lines up with x? 

A = [~ ~] [1 -1] 
1 -1 

2 1 
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When A is singular (rank one), its column space is a line. The vector Ax goes up 
and down that line while x circles around. One eigenvector x is along the line. Another 
eigenvector appears when AX2 = O. Zero is an eigenvalue of a singular matrix. 

• REVIEW OF THE KEY IDEAS • 

1. Ax = AX says that eigenvectors x keep the same direction when multiplied by A. 

2. Ax = AX also says that det(A - AI) = O. This determines n eigenvalues. 

3. The eigenvalues of A 2 and A-I are A 2 and A-I, with the same eigenvectors. 

4. The sum of the A'S equals the sum down the main diagonal of A (the trace). 
The product of the A'S equals the determinant. 

5. Projections P, reflections R, 900 rotations Q have special eigenvalues 1,0, -1, i, -i. 
Singular matrices have A = O. Triangular matrices have A'S on their diagonal. 

• WORKED EXAMPLES • 

6.1 A Find the eigenvalues and eigenvectors of A and A 2 and A-I and A + 41: 

A = [ 2 -IJ -1 2 
2 [5 -4J and A = -4 5' 

Check the trace Al + A2 and the determinant Al A2 for A and also A 2. 

Solution The eigenvalues of A come from det(A - AI) = 0: 

2-A -1 2 
det(A - AI) = -1 2 _ A = A - 4A + 3 = O. 

This factors into (A -1) (A - 3) = 0 so the eigenvalues of A are Al = 1 and A2 = 3. For the 
trace, the sum 2+2 agrees with 1 +3. The determinant 3 agrees with the product AIA2 = 3. 
The eigenvectors come separately by solving (A - AI)x = 0 which is Ax = AX: 

1 = 1: (A - I)x -- [_11 -11 J [Xy J -- [OoJ gives the eigenvector x I = [~J 

l = 3: (A - 3I)x = [ ~ =~ J [~J = [~J gives the eigenvector X2 = [-~ J 
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A2 and A-I and A + 4/ keep the same eigenvectors as A. Their eigenvalues are A 2 and 
A- I andA+4: 

A2 has eigenvalues 12 = I and 32 = 9 
I 1 1 A- has - and-

1 3 
1+4=5 

A + 4/ has 3 + 4 = 7 

The trace of A2 is 5 + 5 which agrees with 1 + 9. The determinant is 25 - 16 = 9. 
Notes for later sections: A has orthogonal eigenvectors (Section 6.4 on symmetric 

matrices). A can be diagonalized since Al =f:. A2 (Section 6.2). A is similar to any 2 by 2 
matrix with eigenvalues I and 3 (Section 6.6). A is a positive definite matrix (Section 6.5) 
since A = AT and the A'S are positive. 

6.1 B Find the eigenvalues and eigenvectors of this 3 by 3 matrix A: 

Symmetric matrix 
Singular matrix 
Trace 1 + 2 + 1 = 4 

A=[-i -1 0] 2 -1 
-1 1 

Solution Since all rows of A add to zero, the vector x = (1, 1, 1) gives Ax = O. This 
is an eigenvector for the eigenvalue A = O. To find A2 and A3 I will compute the 3 by 3 
determinant: 

I-A 
det(A - AI) = -1 

o 

-1 
2-A 
-1 

o 
-1 

I-A 

= (1-A)(2-A)(I-A) -2(I-A) 
= (1-A)[(2-A)(I-A) -2] 
= (1- A)( -A)(3 - A). 

That factor -A confirms that A = 0 is a root, and an eigenvalue of A. The other factors 
(1 - A) and (3 - A) give the other eigenvalues 1 and 3, adding to 4 (the trace). Each 
eigenvalue 0, 1, 3 corresponds to an eigenvector: 

I notice again that eigenvectors are perpendicular when A is symmetric. 
The 3 by 3 matrix produced a third-degree (cubic) polynomial for det(A - AI) 

-A 3 + 4A 2 - 3A. We were lucky to find simple roots A = 0, 1,3. Normally we would use 
a command like eig(A), and the computation will never even use determinants (Section 9.3 
shows a better way for large matrices). 

The full command [S, D] = eig(A) will produce unit eigenvectors in the columns of 
the eigenvector matrix S. The first one happens to have three minus signs, reversed from 
(1, I, 1) and divided by ,)3. The eigenvalues of A will be on the diagonal of the eigenvalue 
matrix (typed as D but soon called A). 
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Problem Set 6.1 
1 The example at the start of the chapter has powers of this matrix A: 

A = [.S .3] 
. 2 .7 

d A2 = [.70 .45] 
an .30 .55 

and Aoo = [.6 .6] 
.4 .4 . 

Find the eigenvalues of these matrices. All powers have the same eigenvectors. 

(a) Show from A how a row exchange can produce different eigenvalues. 

(b) Why is a zero eigenvalue not changed by the steps of elimination? 

2 Find the eigenvalues and the eigenvectors of these two matrices: 

A + I has the __ eigenvectors as A. Its eigenvalues are __ by 1. 

3 Compute the eigenvalues and eigenvectors of A and A-I. Check the trace! 

A = [°1 21] -1 [-1/2 1] and A = 1/2 ° . 

293 

A-I has the __ eigenvectors as A. When A has eigenvalues Al and A2, its inverse 
has eigenvalues __ 

4 Compute the eigenvalues and eigenvectors of A and A2: 

A _ [-1 3] 
- 2 ° 2 [7 -3] and A = -2 6· 

A2 has the same as A. When A has eigenvalues Al and A2, A2 has eigenvalues 
__ . In this example, why is AI + A~ = 13? 

5 Find the eigenvalues of A and B (easy for triangular matrices) and A + B: 

A = [i ~ ] and B = [~ ~] and A +B = [; n 
Eigenvalues of A + B (are equal to )(are not equal to) eigenvalues of A plus eigen­
values of B. 

6 Find the eigenvalues of A and B and AB and BA: 

A = [~ ~] and B = [6 ~] and AB = [~ ;] and BA = [~ ~ l 
(a) Are the eigenvalues of AB equal to eigenvalues of A times eigenvalues of B? 

(b) Are the eigenvalues of AB equal to the eigenvalues of BA? 



294 Chapter 6. Eigenvalues and Eigenvectors 

7 Elimination produces A = LV. The eigenvalues of V are on its diagonal; they 
are the . The eigenvalues of L are on its diagonal; they are all . The 
eigenvalues of A are not the same as __ 

8 (a) If you know that x is an eigenvector, the way to find A is to __ 

(b) If you know that A is an eigenvalue, the way to find x is to __ 

9 What do you do to the equation Ax = AX, in order to prove (a), (b), and (c)? 

(a) A2 is an eigenvalue of A2 , as in Problem 4. 

(b) A -1 is an eigenvalue of A-1, as in Problem 3. 

(c) A + 1 is an eigenvalue of A + I, as in Problem 2. 

10 Find the eigenvalues and eigenvectors for both of these Markov matrices A and A 00 • 

Explain from those answers why A 100 is close to A 00: 

A = [.6 .2] 
.4 .8 

and Aoo = [1/3 1/3] 
2/3 2/3 . 

11 Here is a strange fact about 2 by 2 matrices with eigenvalues A1 =1= A2: The columns 
of A - All are multiples of the eigenvector X2. Any idea why this should be? 

12 Find three eigenvectors for this matrix P (projection matrices have A = 1 and 0): 

Projection matrix 
[

.2 .4 
P = .4 .8 

o 0 

If two eigenvectors share the same A, so do all their linear combinations. Find an 
eigenvector of P with no zero components. 

13 From the unit veptor u = (k, k, ~, ~) construct the rank one projection matrix 
p = uuT. This matrix has p2 = P because uTu = 1. 

(a) Pu = u comes from (uuT)u =u( ). Then u is an eigenvector with A = 1. 

(b) If v is perpendicular to u show that Pv = O. Then A = O. 

(c) Find three independent eigenvectors of P all with eigenvalue A = O. 

14 Solve det(Q - AI) = 0 by the quadratic formula to reach A = cos () ± i sin (): 

Q __ [co. s () - sin ()] sm () cos () rotates the x y plane by the angle (). No real A'S. 

Find the eigenvectors of Q by solving (Q - AI)x = O. Use i 2 = -1. 



6.1. Introduction to Eigenvalues 295 

15 Every permutation matrix leaves x = (1,1, ... ,1) unchanged. Then A = 1. Find 
two more A's (possibly complex) for these permutations, from det(P - A/) = 0: 

[
0 1 0] 

P = 0 0 1 
1 0 0 [

0 0 1] 
and P = 0 I 0 . 

100 

16 The determinant of A equals the product A lA2 ... An. Start with the polynomial 
det(A - A/) separated into its n factors (always possible). Then set A = 0: 

det(A - A/) = (AI - A)(A2 - A)··· (An - A) so detA = __ 

Check this rule in Example 1 where the Markov matrix has A = 1 and!. 

17 The sum of the diagonal entries (the trace) equals the sum of the eigenvalues: 

A = [~ ~] has det(A - A/) = A 2 - (a + d)A + ad - bc = O. 

The quadratic formula gives the eigenvalues A = (a +d + r)/2 and A = __ 
Their sum is . If A has Al = 3 and A2 = 4 then det(A - AI) = __ 

18 If A has Al = 4 and A2 = 5 then det(A - A/) = (A - 4)(A - 5) = A 2 - 9A + 20. 
Find three matrices that have trace a + d = 9 and determinant 20 and A = 4,5. 

19 A 3 by 3 matrix B is known to have eigenvalues 0, 1,2. This information is enough 
to find three of these (give the answers where possible) : 

(a) the rank of B 

(b) the determinant of BT B 

(c) the eigenvalues of BT B 

(d) the eigenvalues of (B2 + /)-1. 

20 Choose the last rows of A and C to give eigenvalues 4, 7 and 1, 2, 3: 

Companion matrices 
A = [~ !] c = [~ ~ !l 

21 The eigenvalues of A equal the eigenvalues of AT. This is because det(A - A/) 
equals det( AT - AI). That is true because . Show by an example that the 
eigenvectors of A and AT are not the same. 

22 Construct any 3 by 3 Markov matrix M: positive entries down each column add to 1. 
Show that MT(1, 1, 1) = (1,1,1). By Problem 21, A = 1 is also an eigenvalue 
of M. Challenge: A 3 by 3 singular Markov matrix with trace! has what A's? 
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23 Find three 2 by 2 matrices that have Al = A2 = O. The trace is zero and the 
determinant is zero. A might not be the zero matrix but check that A2 = O. 

24 This matrix is singular with rank one. Find three A's and three eigenvectors: 

25 Suppose A and B have the same eigenvalues AI, ... , An with the same independent 
eigenvectors x I,. . ., X n. Then A = B. Reason: Any vector x is a combination 
CIXI + ... + CnX n • What is Ax? What is Bx? 

26 The block B has eigenvalues 1, 2 and C has eigenvalues 3,4 and D has eigenval­
ues 5,7. Find the eigenvalues of the 4 by 4 matrix A: 

27 

A_[B C]_ - 0 D -

o 
-2 
o 
o 

1 3 0 
304 
o 6 I 
016 

Find the rank and the four eigenvalues of A and C: 

1 1 1 1 1 0 

A= 
1 1 1 1 

and C= 
0 1 

1 1 1 1 1 0 
1 1 1 1 0 1 

1 0 
0 1 
1 0 
0 1 

28 Subtract / from the previous A. Find the A's and then the determinants of 

0 1 1 1 0 -1 -1 -1 

B=A-/= 
1 0 1 1 

and C=/-A= 
-1 0 -1 -1 

1 1 0 1 -1 -1 0 -1 
\ 

1 1 1 0 -1 -1 -1 0 

29 (Review) Find the eigenvalues of A, B, and C: 

[
1 2 3] 

A = 0 4 5 
006 [

0 0 1] 
and B = 0 2 0 

300 [
2 2 2] 

and C = 2 2 2 . 
222 

30 When a + b = C + d show that (1, 1) is an eigenvector and find both eigenvalues: 

A=[~ ~]. 
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31 If we exchange rows 1 and 2 and columns 1 and 2, the eigenvalues don't change. 
Find eigenvectors of A and B for A = 11. Rank one gives A2 = A3 = O. 

[
1 2 1] 

A = 3 6 3 
484 

32 Suppose A has eigenvalues 0, 3, 5 with independent eigenvectors u, v, w. 

(a) Give a basis for the nullspace and a basis for the column space. 

(b) Find a particular solution to Ax = v + w. Find all solutions. 

(c) Ax = u has no solution. If it did then __ would be in the column space. 

33 Suppose u, v are orthonormal vectors in R 2 , and A = UV T. Compute A 2 = UV T UV T 

to discover the eigenvalues of A. Check that the trace of A agrees with Al + A2. 

34 Find the eigenvalues of this permutation matrix P from det (P - AI) = O. Which 
vectors are not changed by the permutation? They are eigenvectors for A = 1. Can 
you find three more eigenvectors? 

P= 

000 1 
1 000 
o 1 0 0 
o 0 1 0 

Challenge Problems 

35 There are six 3 by 3 permutation matrices P. What numbers can be the determinants 
of P? What numbers can be pivots? What numbers can be the trace of P? What 
four numbers can be eigenvalues of P, as in Problem IS? 

36 Is there a real 2 by 2 matrix (other than I) with A 3 = I? Its eigenvalues must satisfy 
A3 = 1. They can be e2ni / 3 and e-2ni / 3 . What trace and determinant would this 
give? Construct a rotation matrix as A (which angle of rotation?). 

37 (a) Find the eigenvalues and eigenvectors of A. They depend on c: 

(b) Show that A has just one line of eigenvectors when c = 1.6. 

(c) This is a Markov matrix when c = .8. Then An will approach what matrix AOO? 
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6.2 Diagonalizing a Matrix 

When x is an eigenvector, multiplication by A is just multiplication by a number ).: 
Ax = AX. All the difficulties of matrices are swept away. Instead of an interconnected 
system, we can follow the eigenvectors separately. It is like having a diagonal matrix, with 
no off-diagonal interconnections. The 100th power of a diagonal matrix is easy. 

The point of this section is very direct. The matrix A turns into a diagonal matrix A 
when we use the eigenvectors properly. This is the matrix form of our key idea. We start 
right off with that one essential computation. 

[)i~g9n~liz~ti~.n;, .• i~q.~P~Sc¢,tb,¢)i.· b~;h •. ·In1!WXAha~,!i .• iiJ;r¢~lY··.mg¢p;~!1qellt~ig~ny~ctors . 
.Il' .. "~lN .. J?utf.J"J,~lItil1tQ;(tlJe.·.column~Qf.aA<ei~env~C:tormatrlf.S . . 'flien .. S~lA$· .. is·· the 
eige:nviilaedn~'tti~'A~ ;'.' , . .' '.. .... .' . · . .; 

Er~e~¥.e#t~~.' • .rta~~i!:S 
. ;~ig~6v~I~¢~m@*ti~;A: .• ·'.····" 

The matrix A is "diagonalized." We use capital lambda for the eigenvalue matrix, 
because of the small A'S (the eigenvalues) on its diagonal. 

Proof Multiply A times its eigenvectors, which are the columns of S. The first column of 
A S is Ax 1. That is Al x 1. Each column of S is multiplied by its eigenvalue Ai: 

A times S 

The trick is to split this matrix A S into S times A: 

S times A 

Keep those matrices in the right order! Then Al multiplies the first column x I, as shown. 
The diagonalization is complete, and we can write AS = SA in two good ways: 

",,' - ,- ~": .','.~ --

(2) 

The matrix S has an inverse, because its columns (the eigenvectors of A) were assumed to 
be linearly independent. Without n independent eigenvectors, we can't diagonalize. 

A and A have the same eigenvalues AI, ... , An. The eigenvectors are different. The 
job of the original eigenvectors Xl, ..• , X n was to diagonalize A. Those eigenvectors in S 
produce A = SAS-I . You will soon see the simplicity and importance and meaning of 
the nth power An = SAns-I. 
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Example 1 This A is triangular so the A'S are on the diagonal: A = I and A = 6. 

Eigenvectors [ ~] [ ~ ] [ ~ - ~ ] [ ~ ~ ] [ b ~] = [ ~ ~ ] 
S-1 A s A 

In other words A = SAS-I. Then watch A2 = SAS-ISAS-I. When you remove 
S-1 S = I, this becomes SA 2 S-I. Same eigenvectors in S and squared eigenvalues 
in A2. 

The kth power will be Ak = SA k S-I which is easy to compute: 

Powers of A 

With k = I we get A. With k = 0 we get A 0 = I (and A 0 = 1). With k = -1 we get A-I. 
You can see how A2 = [1 35; 0 36] fits that formula when k = 2. 

Here are four small remarks before we use A again. 

Remark 1 Suppose the eigenvalues AI, ... , An are all different. Then it is automatic that 
the eigenvectors XI, ... , X n are independent. Any matrix that has no repeated eigenvalues 
can be diagonalized. 

Remark 2 We can multiply eigenvectors by any nonzero constants. Ax = AX will remain 
true. In Example 1, we can divide the eigenvector (1,1) by ,J2 to produce a unit vector. 

Remark 3 The eigenvectors in S come in the same order as the eigenvalues in A. To 
reverse the order in A, put (1,1) before (1,0) in S: 

New order 6, 1 

To diagonalize A we must use an eigenvector matrix. From S-I AS = A we know that 
AS = SA. Suppose the first column of S is x. Then the first columns of AS and SA are 
Ax and A 1 x. For those to be equal, x must be an eigenvector. 

Remark 4 (repeated warning for repeated eigenvalues) Some matrices have too few 
eigenvectors. Those matrices cannot be diagonalized. Here are two examples: 

Not diagonalizable A = [~ = ~ ] and B = [~ ~ l 
Their eigenvalues happen to be 0 and O. Nothing is special about A = 0, it is the repetition 
of A that counts. All eigenvectors of the first matrix are multiples of (1, 1): 

Only one line 
of eigenvectors Ax = Ox means [ ~ = ~] [ x ] = [~] and x = c [~ ] . 

There is no second eigenvector, so the unusual matrix A cannot be diagonalized. 
Those matrices are the best examples to test any statement about eigenvectors. In many 

true-false questions, non-diagonalizable matrices lead to false. 
Remember that there is no connection between invertibility and diagonalizability: 
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Invertibility is concerned with the eigenvalues (A = 0 or A =1= 0). 

Diagonalizability is concerned with the eigenvectors (too few or enough for S). 

Each eigenvalue has at least one eigenvector! A - AI is singular. If (A - AI)x = 0 leads 
you to x = 0, A is not an eigenvalue. Look for a mistake in solving det(A - AI) = O. 

Eigenvectors for n different A's are independent. Then we can diagonalize A. 

~ii~.':I~Bi~i~~~~[~if~~~~) 
Proof SuPposeclXl +C2X2 = O. Multiply by A to find CIAIXI +C2A2X2 = O. Multiply 
by A2 to find CIA2X 1 + C2A2X2 = O. Now subtract one from the other: 

Subtraction leaves (A 1 - A2)Cl Xl = O. Therefore Cl = O. 

Since the A's are different and Xl =1= 0, we are forced to this conclusion that C1 = O. 
Similarly C2 = O. No other combination gives C1X 1 + C2X2 = 0, so the eigenvectors Xl 

and x 2 must be independent. 
This proof extends directly to j eigenvectors. Suppose C1X 1 + .. '+C jX j = O. Multiply 

by A, multiply by A j, and subtract. This removes x j. Now multiply by A and by A j -1 and 
subtract. This removes x j -1. Eventually only x 1 is left: 

(AI - A2)'" (AI - Aj)C1X1 = 0 which forces C1 = O. (3) 

Similarly every Ci = O. When the A's are all different, the eigenvectors are independent. 
A full set of eigenvectors can go into the columns of the eigenvector matrix S. 

Example 2 Powers of A The Markov matrix A = [:~:~] in the last section had 
Al = I and A2 = .5. Here is A = SAS-1 with those eigenvalues in the diagonal A: 

[.8 .3]=[.6 1][1 0][1 1]=SAS-1 . 
. 2.7 .4 -1 0 .5 .4 -.6 

The eigenvectors (.6,.4) and (1, -1) are in the columns of S. They are also the eigenvectors 
of A 2. Watch how A 2 has, the same S, and the eigenvalue matrix of A 2 is A 2 : 

, 
'-'-"'-':"."':,'0""" -,-:',:.:.':'-' 

Same S for A2 .,: A 2 ••..•. ·"slsss.f~is:0}:_ SA 2 S-l . 
;~<_. :- :,:,·:t(i:~· <-,.: s:,,~:_,-~ _ :)_,' ... ..:, 

(4) 

Just keep going, and you see why the high powers A k approach a "steady state": 

Powers of A Ak = SAkS-1 = [.6 1] [lk 0] [ 1 1] 
.4 -1 0 (.5)k .4 -.6 . 

As k gets larger, (.5)k gets smaller. In the limit it disappears completely. That limit is Aoo : 

Limitk ~ 00 Aoo =[.6 1][1 0][1 1]=[.6 .6]. 
.4 -1 0 0 .4 -.6 .4.4 

The limit has the eigenvector x 1 in both columns. We saw this A 00 on the very first page 
of the chapter. Now we see it coming, from powers like A 100 = SA 100 S-l. 
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>c:6J~stl()h; When does A k -+ zero matrix?,,~:.,~;~l)~#t;f\;/i Allll(~:l. 
:, ':''::: 

Fibonacci Numbers 

We present a famous example, where eigenvalues tell how fast the Fibonacci numbers grow. 
Every new Fibonacci number is the sum of the two previous F's: 

These numbers tum up in a fantastic variety of applications. Plants and trees grow in a 
spiral pattern, and a pear tree has 8 growths for every 3 turns. For a willow those numbers 
can be 13 and 5. The champion is a sunflower of Daniel O'Connell, which had 233 seeds 
in 144 loops. Those are the Fibonacci numbers F13 and F12• Our problem is more basic. 

Problem: Find the Fibonacci number FIOO The slow way is to apply the rule 
Fk+2 = Fk+1 + Fk one step at a time. By adding F6 = 8 to F7 = 13 we reach Fg = 21. 
Eventually we come to FIOO. Linear algebra gives a better way. 

The key is to begin with a matrix equation Uk+l = AUk. That is a one-step rule for 
vectors, while Fibonacci gave a two-step rule for scalars. We match those rules by putting 
two Fibonacci numbers into a vector. Then you will see the matrix A. 

Every step multiplies by A = U ~]. After 100 steps we reach UIOO = A 100UO: 

[ 
FlO I ] 

UIOO = FIOO . 

This problem is just right for eigenvalues. Subtract A from the diagonal of A: 

A - AI = [1 
-i AI] leads to det(A - AI) = A 2 - A-I. 1 -A 

The equation A 2 - A-I = 0 is solved by the quadratic formula (-b ± Jb 2 - 4ac ) /2a: 

1 + J5 
Eigenvalues 'A I = ~ 1.618 

2 

1- J5 ' 
A2 = 2 ~ -.618. ' 

These eigenvalues lead to eigenvectors XI = (AI, 1) and X2 = (A2' 1). Step 2 finds the 
combination of those eigenvectors that gives Uo = (1, 0): 

or 
XI -X2 

Uo = 1 l' 
1\.1 - 11.2 

(6) 
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Step 3 multiplies Uo by A 100 to find UI00. The eigenvectors x 1 and X2 stay separate! 
They are multiplied by 0,1)100 and (A2)100: 

100 steps from Uo 
............' .(Xl)l.OQ~i¥(X2)lQOX2.· 
«190 ........................................................ %1'.[2 ... ,.... .'. ". (7) 

We want F100 = second component of UI00. The second components of x 1 and X2 are 1. 
The difference between (1 + 0)/2 and (1 - 0)/2 is Al - A2 = 0. We have F100: 

F100 = - - ~ 3.54· 10 . 1 [( 1 + 0) 100 (1 - 0) 100] 20 

0 2 2 
(8) 

Is this a whole number? Yes. The fractions and square roots must disappear, because 
Fibonacci's rule Fk+2 = Fk+l + Fk stays with integers. The second term in (8) is less 
than !, so it must move the first term to the nearest whole number: 

Ak_Ak I (1+0)k 
kth Fibonacci number = A: _ A~ = nearest integer to 0 2 (9) 

The ratio of F6 to Fs is 8/5 = 1.6. The ratio FlOd F100 must be very close to the 
limiting ratio (I + 0) /2. The Greeks called this number the "golden mean". 
For some reason a rectangle with sides 1.618 and 1 looks especially graceful. 

Matrix Powers A k 

Fibonacci's example is a typical difference equation uk+l = AUk. Each step multiplies 
by A. The solution is Uk = Akuo. We want to make clear how diagonalizing the matrix 
gives a quick way to compute Ak and find Uk in three steps. 

The eigenvector matrix S produces A = SAS-1 . This is a factorization of the matrix, 
like A = LU or A = QR. The new factorization is perfectly suited to computing powers, 
because every time S -1 multiplies S we get I: 

Powers of A 

I will split SA k S-1 Uo into three steps that show how eigenvalues work: 

1.'¥~t~':'lo:~$L;Gi~mpiif~~~~f:!;(~1~f;f-,~<:_- +9,,#'»-Qt~¢·¢jg¢p.y¢qt~rs~. Then c = S -1 U o. 

2.Mijtti~Iy~a,¢1I·~ig¢nv~¢t~r:;t:iji>ytA,iS.~.;: Now we have A k S -1 uo. 
i • ... 1. _';",~._,_.'<:._. ',,' '.,'. .• ;:.".'_:,,'_'.'~_ ..• ::,._-" •.•.• < •. _.';.-' :,;,; __ .,,;~_~,_,. ,_ 

. ~ . "--''. ":-r','''~' ..... ".'\ ,,", .. ' 
: -:." ......... 

In matrix language A k equals (SA S -1)k which is S times A k times S -1. In Step 1, 
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the eigenvectors in S lead to the c's in the combination Uo = CIX 1 + ... + CnXn: 

Step 1 Uo = [Xl Xn ] [1 This says ilia! Uo = Be. (11) 

The coefficients in Step 1 are c = S-luO. Then Step 2 multiplies by Ak. The final result 
Uk = L Ci (Ai)k Xi in Step 3 is the product of Sand Ak and S-IUO: 

This result is exactly Uk = CI (A l)k Xl + ... + Cn (An)k X n. It solves Uk+ 1 = AUk. 

Example 3 Start from Uo = (1, 0). Compute Akuo when S and A contain these eigen­
vectors and eigenvalues: 

This matrix is like Fibonacci except the rule is changed to Fk+2 = Fk+l + 2Fk. 
The new numbers start 0,1,1,3. They grow faster from A = 2. 

Step 1 
1 

so Cl = C2 = -
3 

Step 2 Multiply the two parts by (A l)k = 2k and (A2)k = (_I)k 

Step 3 Combine eigenvectors CI (AI)k X 1 and C2(A2)k X2 into Uk: 

1 k [2] 1 k [ 1] Uk = 3"2 1 + 3"(-1) -1 . (13) 

The new number is Fk = (2k - (-I)k)/3. After 0,1,1,3 comes F4 = 15/3 = 5. 

Behind these numerical examples lies a fundamental idea: Follow the eigenvectors. In 
Section 6.3 this is the crucial link from linear algebra to differential equations (powers A k 

will become eAt). Chapter 7 sees the same idea as "transforming to an eigenvector basis." 
The best example of all is a Fourier series, built from the eigenvectors of d / dx. 
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Nondiagonalizable Matrices (Optional) 

Suppose A is an eigenvalue of A. We discover that fact in two ways: 

1. Eigenvectors (geometric) There are nonzero solutions to Ax = AX. 

2. Eigenvalues (algebraic) The determinant of A - AI is zero. 

The number A may be a simple eigenvalue or a multiple eigenvalue, and we want to know 
its multiplicity. Most eigenvalues have multiplicity M = I (simple eigenvalues). Then 
there is a single line of eigenvectors, and det(A - AI) does not have a double factor. 

For exceptional matrices, an eigenvalue can be repeated. Then there are two different 
ways to count its multiplicity. Always OM < AM for each A: 

1. ;<~~~m~~~~Hj~!l?l!~ltY'#~Mj' Count the independent eigenvectors for A. This 
i~ 'th~ 'dl~e~~i~~~f ih~ diiii~p~~e' of A - AI. 

2. :~~g~~i~~~ql~~~¢ltY'¥;~~: Count the repetitions of l among the eigenval­
~~s.'Io"~kanh~'n~~·ot~~{d~t(A - AI) = O. 

If A has A = 4,4,4, that eigenvalue has AM = 3 and OM = 1,2, or 3. 
The following matrix A is the standard example of trouble. Its eigenvalue A = 0 is 

repeated. It is a double eigenvalue (AM = 2) with only one eigenvector (OM = 1). 

AM=2 
GM=l [

0 1] -A 1 2 
A = 0 0 has det(A - AI) = 0 -A = A . 

l = 0,0 but 
1 eigenvector 

There "should" be two eigenvectors, because A 2 = 0 has a double root. The double factor 
A2 makes AM = 2. But there is only one eigenvector x = (1,0). This shortage of 
eigenvectors when OM is below AM means that A is not diagonalizable. 

The vector called "repeats" in the Teaching Code eigval gives the algebraic multiplicity 
AM for each eigenvalue. When repeats = [1 1. .. 1] we know that the n eigenvalues are 
all different and A is diagonalizable. The sum of all components in "repeats" is always n, 
because every nth degree equation det(A - AI) = 0 has n roots (counting repetitions). 

The diagonal matrix D in the Teaching Code eigvec gives the geometric mUltiplicity 
OM for each eigenvalue. This counts the independent eigenvectors. The total number of 
independent eigenvectors might be less than n. Then A is not diagonalizable. 

We emphasize again: A = 0 makes for easy computations, but these three matrices also 
have the same shortage of eigenvectors. Their repeated eigenvalue is A = 5. Traces are 10, 
determinants are 25: 

A = [05 51] [6 -1] and A = 1 4 

Those all have det(A - AI) = (A - 5)2. The algebraic multiplicity is AM = 2. But each 
A-51 has rank r = 1. The geometric multiplicity is OM = 1. There is only one line of 
eigenvectors for A = 5, and these matrices are not diagonalizable. 



6.2. Diagonalizing a Matrix 305 

Eigenvalues of A B and A + B 

The first guess about the eigenvalues of A B is not true. An eigenvalue A of A times an 
eigenvalue {3 of B usually does not give an eigenvalue of AB: 

False proof ABx = A{3x = {3Ax = {3AX. (14) 

It seems that {3 times A is an eigenvalue. When x is an eigenvector for A and B, this 
proof is correct. The mistake is to expect that A and B automatically share the same 
eigenvector x. Usually they don't. Eigenvectors of A are not generally eigenvectors of B. 
A and B could have all zero eigenvalues while 1 is an eigenvalue of A B: 

A = [~ ~] and B = [~ ~]; then A B = [~ ~ ] and A + B = [~ ~]. 
For the same reason, the eigenvalues of A + B are generally not A + {3. Here A + {3 = 0 
while A + B has eigenvalues 1 and -1. (At least they add to zero.) 

The false proof suggests what is true. Suppose x really is an eigenvector for both A and 
B. Then we do have ABx = A{3x and BAx = A{3X. When all n eigenvectors are shared, 
we can multiply eigenvalues. The test AB = BA for shared eigenvectors is important in 
quantum mechanics-time out to mention this application of linear algebra: 

Heisenberg's uncertainty principle In quantum mechanics, the position matrix P and 
the momentum matrix Q do not commute. In fact Q P - P Q = I (these are infinite 
matrices). Then we cannot have P x = 0 at the same time as Qx = 0 (unless x = 0). 
If we knew the position exactly, we could not also know the momentum exactly. 
Problem 28 derives Heisenberg's uncertainty principle II P x II II Qx II > ! Ilx 112. 

• REVIEW OF THE KEY IDEAS • 

1. If A has n independent eigenvectors XI, ••• , X n, they go into the columns of S. 

A is diagonalized by S S-IAS = A and A = SAS-1. 

2. The powers of A are A k = SA k S-I. The eigenvectors in S are unchanged. 

3. The eigenvalues of Ak are (A d k , ... , (An)k in the matrix A k. 

4. The solution to uk+l = AUk starting from Uo is Uk = Akuo = SAk S-luo: 

That shows Steps 1,2,3 (e's from S-l uO , A k from Ak, and x's from S) 
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5. A is diagonalizable if every eigenvalue has enough eigenvectors (GM = AM). 

• WORKED EXAMPLES • 

6.2 A The Lucas numbers are like the Fibonacci numbers except they start with 
Ll = I and L2 = 3. Following the rule Lk+2 = Lk+l + Lb the next Lucas num­
bers are 4,7, 11, 18. Show thatthe Lucas number LlOo is ..:qoo + A1°0 . 

Note The key point is that Al + A2 = 1 and Ai + A~ = 3, when the A's are (1 ± ./5)/2. 
The Lucas number Lk is l~ + l~, since this is correct for Ll and L 2• 

Solution uk+l = U ~]Uk is the same as for Fibonacci, because Lk+2 = Lk+l + Lk 

is the same rule (with different starting values). The equation becomes a 2 by 2 system: 

L~t Uk = [LLk+k 1] .• 'fl1~rnl~ ••. L ........ · ..•. k4 ... · ..... 2 .. ·.· ........................ L .•.•. ·k ...... + .....••...••.. i4- Lf is Uk+I = [11 0
1

] Uk . 
. ' .. ' ..... Lk+l =Lk£i .. 

The eigenvalues and eigenvectors of A = [~ ~] still come from A 2 = A + 1: 

1-./5 [A2] A2 = 2 and x 2 = 1 . 

Now solve CIXI + C2X2 = Ul = (3,1). The solution is Cl = Al and C2 = A2. Check: 

A x + A x = [ Ai + A~ ] = [ trace of A 
2 

] = [ 3 ] = U 
1 1 2 2 Al + A2 trace of All 

UIOO = A99ul tells us the Lucas numbers (L I01 , L lOo ). The second components of the 
eigenvectors Xl and X2 are 1, so the second component of UIOO is the answer we want: 

" 

Lucas number L ,99,99, 100 , 100 
100 = Cll1.1 + C211.2 = Al + 11.2 • 

Lucas starts faster than Fibonacci, and ends up larger by a factor near ./5. 

6.2 B Find the inverse and the eigenvalues and the determinant of A: 

4 -1 -1 -1 

A = 5 * eye(4) - ones(4) = 
-1 4 -1 -1 
-1 -1 4 -1 
-1 -1 -1 4 

Describe an eigenvector matrix S that gives S-1 AS = A. 
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Solution What are the eigenvalues of the all-ones matrix ones(4)? Its rank is certainly 
1, so three eigenvalues are A = 0,0,0. Its trace is 4, so the other eigenvalue is A = 4. 
Subtract this all-ones matrix from 51 to get our matrix A: 

Subtract the eigenvalues 4, 0, 0, ° from 5,5,5, S. The eigenvalues of A are 1,5,5, S. 

The determinant of A is 125, the product of those four eigenvalues. The eigenvector for 
A = 1 is x = (1, 1, 1, 1) or (c, c, c, c). The other eigenvectors are perpendicular to x 
(since A is symmetric). The nicest eigenvector matrix S is the symmetric orthogonal 
Hadamard matrix H (normalized to unit column vectors): 

1 1 1 1 

Orthonormal eigenvectors 
1 1 -1 1 -1 = HT = H- l . S=H=-

1 1 -1 -1 2 
1 -1 -1 1 

The eigenvalues of A-I are 1, ~, ~,~. The eigenvectors are not changed so A-I 
H A -1 H-1• The inverse matrix is surprisingly neat: 

1 1 
A-I = - * (eye(4) + ones(4)) = -

5 5 

2 1 1 1 
1 2 1 1 
1 1 2 1 
1 1 1 2 

A is a rank-one change from 51. So A-I is a rank-one change 1 /5 + ones/5. 
The determinant 125 counts the "spanning trees" in a graph with 5 nodes (all edges 

included). Trees have no loops (graphs and trees are in Section 8.2). 
With 6 nodes, the matrix 6 * eye(5) - ones(5) has the five eigenvalues 1,6,6,6,6. 

Problem Set 6.2 

Questions 1-7 are about t~e eigenvalue and eigenvector matrices A and S. 

1 (a) Factor these two matrices into A = SAS- I : 

A = [~ ~] and 

(b) If A = SAS- I then A3 = ( )( )( ) and A-I = ( )( )( ). 

2 If A has Al = 2 with eigenvector Xl = U] and A2 = 5 with X2 = U], 
use SAS-I to find A. No other matrix has the same A'S and x's. 

3 Suppose A = SAS- I . What is the eigenvalue matrix for A + 21? What is the 
eigenvector matrix? Check that A + 21 = ( )( )( )-1. 
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4 True or false: If the columns of S (eigenvectors of A) are linearly independent, then 

(a) A is invertible 

(c) S is invertible 

(b) A is diagonalizable 

(d) S is diagonalizable. 

5 If the eigenvectors of A are the columns of I, then A is a matrix. If the eigen-
vector matrix S is triangular, then S -1 is triangular. Prove that A is also triangular. 

6 Describe all matrices S that diagonalize this matrix A (find all eigenvectors): 

A=[i ~]. 
Then describe all matrices that diagonalize A-I. 

7 Write down the most general matrix that has eigenvectors [1] and [-1]. 

Questions 8-10 are about Fibonacci and Gibonacci numbers. 

8 Diagonalize the Fibonacci matrix by completing S-I: 

Do the multiplication SAkS"':'I[A] to find its second component. This is the kth 

Fibonacci number Fk = (A1- An / (AI - A2)' 

9 Suppose Gk+2 is the average of the two previous numbers Gk+I and Gk: 

Gk+2 = ~Gk+l + ~Gk 
Gk+I = Gk+I 

is 

(a) Find the eigenvalues and eigenvectors of A. 

(b) Find the limit as n -+ 00 of the matrices An = SAns-I. 

(c) If Go = ° and G I = 1 show that the Gibonacci numbers approach j. 

10 Prove that every third Fibonacci number in 0, 1, 1,2,3, ... is even. 

Questions 11-14 are about diagonalizability. 

11 True or false: If the eigenvalues of A are 2, 2, 5 then the matrix is certainly 

(a) invertible (b) diagonalizable (c) not diagonalizable. 

12 True or false: If the only eigenvectors of A are mUltiples of (1, 4) then A has 

(a) no inverse (b) a repeated eigenvalue (c) no diagonalization SAS-1• 
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13 Complete these matrices so that det A = 25. Then check that A = 5 is repeated­
the trace is 10 so the determinant of A - AI is (A - 5)2. Find an eigenvector with 
Ax = 5x. These matrices will not be diagonalizable because there is no second line 
of eigenvectors. 

14 The matrix A = [~~] is not diagonalizable because the rank of A - 31 is __ 
Change one entry to make A diagonalizable. Which entries could you change? 

Questions 15-19 are about powers of matrices. 

15 Ak = SAk S- 1 approaches the zero matrix as k -+ 00 if and only if every A has 
absolute value less than . Which of these matrices has A k -+ O? 

Al = [.6 .9] 
.4 .1 

and A = [.6 .9] 
2 .1.6' 

16 (Recommended) Find A and S to diagonalize Al in Problem 15. What is the limit 
of A k as k -+ oo? What is the limit of SA k S-I? In the columns of this limiting 
matrix you see the __ 

17 Find A and S to diagonalize A2 in Problem 15. What is (A 2)10uo for these uo? 

Uo = [i] and Uo = [_ i ] and Uo = [~] . 

18 Diagonalize A and compute SA k S-1 to prove this formula for A k : 

A = [ 2 -1] 
-1 2 

has 

19 Diagonalize B and compute SA k S -1 to prove this formula for B k : 

B=[~ !] has 

20 Suppose A = SAS-l. Take determinants to prove detA = detA = AIA2 ···An • 

This quick proof only works when A can be __ 

21 Show that trace S T = trace T S, by adding the diagonal entries of STand T S : 

S = [~ ~] and 

Choose T as AS-I. Then SAS-1 has the same trace as AS-1 S = A. The trace of 
A equals the trace of A = sum of the eigenvalues. 
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22 AB - BA = I is impossible since the left side has trace = __ . But find an 
elimination matrix so that A = E and B = ET give 

A B - BA = [-b ~ ] which has trace zero. 

23 If A = SAS-1 , diagonalize the block matrix B = [~J]' Find its eigenvalue and 
eigenvector (block) matrices. 

24 Consider all 4 by 4 matrices A that are diagonalized by the same fixed eigenvector 
matrix S. Show that the A's form a subspace (cA and Al + A2 have this same S). 
What is this subspace when S = I? What is its dimension? 

25 Suppose A2 = A. On the left side A multiplies each column of A. Which of our four 
subspaces contains eigenvectors with A = I? Which subspace contains eigenvectors 
with A = O? From the dimensions of those subspaces, A has a full set of independent 
eigenvectors. So a matrix with A 2 = A can be diagonalized. 

26 (Recommended) Suppose Ax = AX. If A = 0 then X is in the nUllspace. If A i 0 
then x is in the column space. Those spaces have dimensions (n - r) + r = n. So 
why doesn't every square matrix have n linearly independent eigenvectors? 

27 The eigenvalues of A are 1 and 9, and the eigenvalues of Bare -1 and 9: 

A = [~ ~] and B = [~ ~]. 
Find a matrix square root of A from R = s..fA S-I. Why is there no real matrix 
square root of B? 

28 (Heisenberg's Uncertainty Principle) AB - BA = I can happen for infinite ma­
trices with A = AT and B = _BT. Then 

Explain that last step by using the Schwarz inequality. Then Heisenberg's inequality 
says that II Ax 11/ II x II times liB x II / II x II is at least!. It is impossible to get the position 
error and momentum error both very small. 

29 If A and B have the same A'S with the same independent eigenvectors, their factor-
izations into are the same. So A = B. 

30 Suppose the same S diagonalizes both A and B. They have the same eigenvectors in 
A = SA 1S-1 and B = SA2 S-I. Prove that AB = BA. 

31 (a) If A = [g ~] then the determinant of A - AI is (A - a)(A - d). Check the 
"Cayley-Hamilton Theorem" that (A - aI)(A - dI) = zero matrix. 

(b) Test the Cayley-Hamilton Theorem on Fibonacci's A = U A], The theorem 
predicts that A2 - A - I = 0, since the polynomial det(A - AI) is A 2 - A-I. 



6.2. Diagonalizing a Matrix 311 

32 Substitute A = SAS-1 into the product (A - )"1 I) (A - A2I)··· (A - AnI) and 
explain why this produces the zero matrix. We are substituting the matrix A for the 
number A in the polynomial peA) = det(A - AI). The Cayley-Hamilton Theorem 
says that this product is always peA) = zero matrix, even if A is not diagonalizable. 

33 Find the eigenvalues and eigenvectors and the kth power of A. For this "adjacency 
matrix" the i, j entry of A k counts the k -step paths from i to j . 

1's in A show 
edges between nodes [

1 1 1] 
A = 1 0 0 

1 0 0 

2 

3 

34 If A = [ij ~J and AB = BA, show that B = [~~J is also a diagonal matrix. B 
has the same eigen as A but different eigen . These diagonal matrices 
B form a two-dimensional subspace of matrix space. AB - BA = 0 gives four 
equations for the unknowns a, b, c, d-find the rank of the 4 by 4 matrix. 

35 The powers Ak approach zero if all lAd < 1 and they blow up if any IAi I > 1. 
Peter Lax gives these striking examples in his book Linear Algebra: 

A = [i~] B = [_~ _;] C = [_~ _~] D = [_; 6.!] 
C 1024 =-C II D 1024 11 < 10-78 

Find the eigenvalues A = eiB of Band C to show B4 = / and C 3 = -/. 

Challenge Problems 

36 The nth power of rotation through () is rotation through n(): 

An = [eos() -Sin()]n = [cosn() -Sinn()] 
sin () cos () sin n () cos n () . 

Prove that neat formula by diagonalizing A = SAS-1 . The eigenvectors (columns 
of S) are (I, i) and (i, 1). You need to know Euler's formula eiB = cos () + i sin (). 

37 The transpose of A = SAS-1 is AT = (S-l)T AST. The eigenvectors in ATy = 
AY are the columns of that matrix (S-I)T. They are often called left eigenvectors. 
How do you multiply matrices to find this formula for A? 

Sum of rank-l matrices A = SAS-1 = AlxlyI + ... + Anxny~. 

38 The inverse of A = eye(n) + ones(n) is A-I = eye(n) + C * ones(n). Multiply 
AA- I to find that number C (depending on n). 
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6.3 Applications to Differential Equations 

Eigenvalues and eigenvectors and A = SAS-l are perfect for matrix powers Ak. They are 
also perfect for differential equations d u / d t = Au. This section is mostly linear algebra, 
but to read it you need one fact from calculus: The derivative of eAt is AeAt . The whole 
point of the section is this: To convert constant-coefficient differential equations into 
linear algebra. 

The ordinary scalar equation du/ dt = u is solved by u = et . The equation du/ dt = 
4u is solved by u = e4t . The solutions are exponentials! 

One equation ~~ = AU has the solutions u(t) = CeAt. (1) 

The number C turns up on both sides of du/ dt 
reduces to C (because eO = 1). By choosing C 
u(O) at t = 0 is u(t) = u(O)eAt . 

= AU. At t = 0 the solution CeAt 
= u(O), the solution that starts from 

We just solved a 1 by 1 problem. Linear algebra moves to n by n. The unknown is 
a vector u (now boldface). It starts from the initial vector u(O), which is given. The n 
equations contain a square matrix A. We expect n exponentials eAt x in u(t). 

(2) 

These differential equations are linear. If u(t) and vet) are solutions, so is C u(t) + Dv(t). 
We will need n constants like C and D to match the n components of u(O). Our first job is 
to find n "pure exponential solutions" u = eAt x by using Ax = AX. 

Notice that A is a constant matrix. In other linear equations, A changes as t changes. 
In nonlinear equations, A changes as u changes. We don't have those difficulties. 
du/dt = Au is "linear with constant coefficients". Those and only those are the dif­
ferential equations that we will convert directly to linear algebra. The main point will be: 

Solve linear constant coefficient equations by exponentials eAt x, when Ax = AX. 

Solution of du/dt = Au 

Our pure exponential solution will be eAt times a fixed vector x. You may guess that A 
is an eigenvalue of A, and x is the eigenvector. Substitute u(t) = eAt x into the equation 
du/ dt = Au to prove you are right (the factor eAt will cancel): 

du , - = Aell.t x 
dt 

All components of this special solution u = eAt x share the same eAt. The solution 
grows when A > O. It decays when A < O. If A is a complex number, its real part decides 
growth or decay. The imaginary part (J) gives oscillation ei wt like a sine wave. 
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Example 1 Solve du/dt = Au = [~~]u starting from u(O) = [~]. 
This is a vector equation for u. It contains two scalar equations for the components y and z. 
They are "coupled together" because the matrix is not diagonal: 

~; = Au :t [~] = [~ b] [;] means that : = z and ~; = y. 

The idea of eigenvectors is to combine those equations in a way that gets back to 
1 by 1 problems. The combinations y + z and y - z will do it: 

d d/y + z) = z + y and 
d d/Y -z) = -(y -z). 

The combination y + z grows like et , because it has A = 1. The combination y - z decays 
like e-t , because it has A = -1. Here is the point: We don't have to juggle the original 
equations d u / d t = Au, looking for these special combinations. The eigenvectors and 
eigenvalues of A will do it for us. 

This matrix A has eigenvalues 1 and -1. The eigenvectors are (1, 1) and (1, -1). The 
pure exponential solutions uland U2 take the form eAt x with A = 1 and -1: 

(4) 

Notice: These u's are eigenvectors. They satisfy AUI = UI and AU2 = -U2, just like XI 
andx2. Thefactorse t ande-t change with time. ThosefactorsgiveduI/dt = UI = AUI 
and dU2/dt = -U2 = AU2. We have two solutions to du/dt = Au. To find all other 
solutions, multiply those special solutions by any C and D and add: 

Complete solution t [1] -I [ 1 ] [C el + De -I ] u(t) = Ce 1 + De -1 = Cel _ De-t . (5) 

With these constants C and D, we can match any starting vector u(O). Set t = 0 and 
eO = 1. The problem asked for the initial value u(O) = (4,2): 

u(O) gives C, D C [n + D [_ ~] = [~] yields C = 3 and D = 1. 

With C = 3 and D = 1 in the solution (5), the initial value problem is solved. 
The same three steps that solved Uk+l = AUk now solve du/dt = Au: 

1. Write u (0) as a combination Cl XI + ... + CnX n of the eigenvectors of A. 

2. Multiply each eigenvector x i by eAi t . 

3. The solution is the combination of pure solutions eAt x: 

(6) 

Not included: If two A'S are equal, with only one eigenvector, another solution is needed. 
(It will be teAt x). Step 1 needs A = SAS-I to be diagonalizable: a basis of eigenvectors. 
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Example 2 Solve d u/ dt = Au knowing the eigenvalues A = 1, 2, 3 of A: 

d [1 1 1] [9] d
U 

= ° 2 I u starting from u(o) = 7 . 
too 3 4 

The eigenvectors are Xl = (1,0,0) andx2 = (1,1,0) andx3 = (1,1,1). 

Step 1 The vector u(o) = (9,7,4) is 2x 1 + 3X2 + 4X3. Thus (CI, C2, C3) = (2,3,4). 

Step 2 The pure exponential solutions are et x 1 and e2t X2 and e3t X3. 

Step 3 The combination that starts from u(o) is u(t) = 2et Xl + 3e2t X2 + 4e3t X3. 

The coefficients 2, 3, 4 came from solving the linear equation CIX I + c2X2 + c3x3 = u(o): 

You now have the basic idea-how to solve d u / d t = Au. The rest of this section goes 
further. We solve equations that contain second derivatives, because they arise so often in 
applications. We also decide whether u(t) approaches zero or blows up or just oscillates. 

At the end comes the matrix exponential eAt. Then eAt u(O) solves the equation 
du/ dt = Au in the same way that Ak Uo solves the equation uk+l = AUk. In fact 
we ask whether Uk approaches u(t). Example 3 will show how "difference equations" 
help to solve differential equations. You will see real applications. 

All these steps use the A'S and the x's. This section solves the constant coefficient 
problems that tum into linear algebra. It clarifies these simrlest but most important 
differential equations-whose solution is completely based on e t. 

Second Order Equations 

The most important equation in mechanics is my" +by' +ky = 0. The first term is the mass 
m times the acceleration a = y". This term ma balances the force F (Newton's Law!). 
The force includes the damping -by' and the elastic restoring force -ky, proportional to 
distance moved. This is a second-order equation because it contains the second derivative 
y" = d 2 Y / d t 2 . It is sti1llinear with constant coefficients m, b, k. 

In a differential equations course, the method of solution is to substitute y = eAt. 
Each derivative brings down a factor A. We want y = eAt to solve the equation: 

d 2y dy 
m dt 2 + b dt + ky = ° becomes (mA

2 + bA + k)e At = 0. (8) 

Everything depends on mA 2 + bA + k = 0. This equation for A has two roots A I and 
A2. Then the equation for y has two pure solutions YI = eA1t and Y2 = eA2t . Their 
combinations ClYI + C2Y2 give the complete solution unless Al = A2. 
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In a linear algebra course we expect matrices and eigenvalues. Therefore we tum the 
scalar equation (with y") into a vector equation (first derivative only). Suppose m = 1. 
The unknown vector u has components y and y'. The equation is du/dt = Au: 

dy/dt = y' 
(9) 

dy'/dt = -ky -by' 

The first equation dy / dt = y' is trivial (but true). The second equation connects y" to y' 
and y. Together the equations connect u' to u. So we solve by eigenvalues of A: 

The equation for the ).. 's is the same! It is still )..2 + b)" + k = 0, since m = 1. 
The roots Al and A2 are now eigenvalues of A. The eigenvectors and the solution are 

The first component of u(t) has y = cleAlt + c2eA2t-the same solution as before. 
It can't be anything else. In the second component of u(t) you see the velocity dy / dt. 
The vector problem is completely consistent with the scalar problem. 

Example 3 Motion around a circle with y" + y = 0 and y = cos t 

This is our master equation with mass m = I and stiffness k = 1 and no damping dy'. 
Substitute y = eAt into y" + y = 0 to reach )..2 + 1 = O. The roots are).. = i and 
A = -i. Then half of eit + e-it gives the solution y = cos t. 

As a first-order system, the initial values yeO) = 1, y'(O) = 0 go into u(O) = (1,0): 

Use y" =-y du = ~ [y] = [ 0 I] [y] = Au 
dt dt y' -lOy' . 

(10) 

The eigenvalues of A are again A = i and A = -i (no surprise). A is anti-symmetric with 
eigenvectors Xl = (1,i) andx2 = (l,-i). Thecombinationthatmatchesu(O) = (1,0) 
is ~(Xl + X2). Step 2 mUltiplies ~ by eit and e-it . Step 3 combines the pure oscillations 
into u(t) to find y = cos t as expected: 

u(t)=~eit[~]+~e-it[ ~]=[ C?st]. 2 l 2 -l -SlOt 
Th. . [y(t)] 

IS IS y' (t) . 

All good. The vector u = (cos t, - sin t) goes around a circle (Figure 6.3). The radius is I 
because cos2 t + sin2 t = I. 

To display a circle on a screen, replace y" = -y by ajinite difference equation. Here 
are three choices using Y (t+~t) - 2Y (t) + Y (t-~t). Divide by (~t)2 to approximate y". 
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Figure 6.3 shows the exact y (t) = cos t completing a circle at t = 2n. The three difference 
methods don't complete a perfect circle in 32 steps of length /).t 2n /32. 
Those pictures will be explained by eigenvalues: 

Forward III >1 (spiral out) Centered IA I = I (best) Backward Ill<l (spiral in) 

The 2-step equations (11) reduce to I-step systems. In the continuous case u was 
(y, y'). Now the discrete unknown is Un = (Yn• Zn) after n time steps /).t from U 0: 

Those are like Y' = Z and Z' = - Y. Eliminating Z will bring back equation (11). 
From the equation for Yn+1, subtract the same equation for Yn. That produces Yn+1 - Yn 
on the left side and Yn - Yn- 1 on the right side. Also on the right is /).t(Zn - Zn-d, 
which is -(/).t?Yn- 1 from the Z equation. This is the forward choice in equation (11). 

My question is simple. Do the points (Yn, Zn) stay on the circle y2 + Z2 = I? 
They could grow to infinity, they could decay to (0,0). The answer must be found in the 
eigenvalues of A. IAI2 is I + (/).t)2, the determinant of A. Figure 6.3 shows growth! 

We are taking powers An and not eAt, so we test the magnitude IAI and not the real 
partolA. 

y' 

I------~------~~ 

Y 

I 
I 
I 

I 
I 

.­
" , , , 

\ 

\ 

U o 

Figure 6.3: Exact u = (cos t, - sin t) on a circle. Forward Euler spirals out (32 steps). 
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The backward choice in (11) will do the opposite in Figure 6.4. Notice the difference: 

Backward Yn+1 = Yn + D..t Zn+l is [1 -D..t] [Yn+l] = [Yn] = Un. (13) 
Zn+l = Zn - D..t Yn+l D..t 1 Zn+l Zn 

That matrix is AT. It still has A = 1 ± i D..t. But now we invert it to reach U n+ 1. 

When AT has IAI > 1, its inverse has IAI < 1. That explains why the solution spirals in 
to (0,0) for backward differences . 
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Figure 6.4: Backward differences spiral in. Leapfrog stays near the circle Y; + Z~ = 1. 

On the right side of Figure 6.4 you see 32 steps with the centered choice. The solution 
stays close to the circle (Problem 28) if D..t < 2. This is the leapfrog method. The second 
difference Yn+l - 2Yn + Yn- 1 "leaps over" the center value Yn. 

This is the way a chemist follows the motion of molecules (molecular dynamics leads 
to giant computations). Computational science is lively because one differential equation 
can be replaced by many difference equations-some unstable, some stable, some neutral. 
Problem 30 has a fourth (good) method that stays right on the circle. 

Note Real engineering and real physics deal with systems (not just a single mass at 
one point). The unknown y. is a vector. The coefficient of y" is a mass matrix M, 
not a number m. The coefficient of y is a stiffness matrix K, not a number k. The 
coefficient of y' is a damping matrix which might be zero. 

The equation My" + K y = f is a major part of computational mechanics. It is 
controlled by the eigenvalues of M- 1 Kin Kx = AMx. 

Stability of 2 by 2 Matrices 

For the solution of du/dt = Au, there is a fundamental question. Does the solution 
approach u = 0 as t -+ oo? Is the problem stable, by dissipating energy? The solutions in 
Examples 1 and 2 included et (unstable). Stability depends on the eigenvalues of A. 

The complete solution u (t) is built from pure solutions eAt x. If the eigenvalue A is 
real, we know exactly when eA.t will approach zero: The number A must be negative. 
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If the eigenvalue is a complex number A r + is, the real part r must be negative. 
When eAt splits into ert eist , the factor eist has absolute value fixed at 1: 

eist = cos st + i sin st has leist 12 = cos2 st + sin2 st = 1. 

The factor ert controls growth (r > 0 is instability) or decay (r < 0 is stability). 
The question is: Which matrices have negative eigenvalues? More accurately, when 

are the real parts of the A'S all negative? 2 by 2 matrices allow a clear answer. 

~.~bn~tY'4,J~i,,$(<<A~;~d',u(t) .'.·~.O.~lJ.eIl~11;elg~hv:~b.l~~.lJ.avei){katii'~r~#t'p4rt$~ . 

>, ' . ':'\-",,(,~ 

The trace T = a + d must be negative. 
The determinant D = ad - be must be positive. 

Reason If the A'S are real and negative, their sum is negative. This is the trace T. Their 
product is positive. This is the determinant D. The argument also goes in the reverse 
direction. If D = Al A2 is positive, then A 1 and A2 have the same sign. If T = Al + A2 is 
negative, that sign will be negative. We can test T and D. 

If the A'S are complex numbers, they must have the form r + is and r - is. 
Otherwise T and D will not be real. The determinant D is automatically positive, since 
(r + is)(r - is) = r2 + S2. The trace T is r + is + r - is = 2r. So a negative trace 
means that the real part r is negative and the matrix is stable. Q.E.D. 

Figure 6.5 shows the parabola T2 = 4D which separates real from complex eigenval­
ues. Solving A 2 - TA + D = 0 leads to .JT2 - 4D. This is real below the parabola and 
imaginary above it. The stable region is the upper left quarter of the figure-where the 
trace T is negative and the determinant D is positive. 

determinant D 

, bothRe A> 0 
, 

[~ -1] stable , 
-3 

unstable 
, , , 

[~ -~] " unstable 
" " both A > 0 

" T'2,,:; L\~ ,," unstable 

[~ -~] ... trace T neutral 

D< 0 means Al < 0 and A2 > 0: unstable 

Figure 6.5: A 2 by 2 matrix is stable (u(t) -+ 0) when trace < 0 and det > O. 



6.3. Applications to Differential Equations 319 

The Exponential of a Matrix 

We want to write the solution u(t) in a new form eAt u(O). This gives a perfect parallel 
with Akuo in the previous section. First we have to say what eAt means, with a matrix in 
the exponent. To define eAt for matrices, we copy eX for numbers. 

The direct definition of eX is by the infinite series 1 + x + ~ x 2 + ~ x 3 + .... When 
you substitute any square matrix At for x, this series defines the matrix exponential eAt: 

eAt = J + At + ~(At)2 + ~(At)3 + ... 
;4: + ...... ;4~' +· .... 1A··.····~····~·.·.···+··· .•••..... . . . .. A At . 

·!1· ...•. /f,J/.· ........ ··. z ·f ..... q.>-:-::-. e . 

The number that divides (At)n is "n factorial". This is n1 = (1)(2)··. (n - 1)(n). 
The factorials after 1,2,6 are 41 = 24 and 51 = 120. They grow quickly. The series 
always converges and its derivative is always AeAt . Therefore eAt u(O) solves the 
differential equation with one quick formula-even if there is a shortage of eigenvectors. 

I will use this series in Example 4, to see it work with a missing eigenvector. 
It will produce te)..t. First let me reach SeAt S-1 in the good (diagonalizable) case. 

This chapter emphasizes how to find u(t) = eAt u(O) by diagonalization. Assume A 
does have n independent eigenvectors, so it is diagonalizable. Substitute A = SAS-1 into 
the series for eAt. Whenever SAS-1 SAS-1 appears, cancel S-1 S in the middle: 

Use the series 

Factor out Sand S-1 

eAt = J + SAS-1t + ~(SAS-lt)(SAS-lt) + ... 

= S [J + At + ~(At)2 + ... ] S-1 

Diagonalize eAt = ',i$~eA..t$21" (15) 

That equation says: eAt equ~ls SeAt S-I. Then A is a diagonal matrix and so is eAt. 
The numbers eAjt are on its d'iagonal. Multiply SeAt S-l u (O) to recognize u(t): 

This solution eAt u(O) is the same answer that came in equation (6) from three steps: 

1. Write u(O) = CIX 1 + ... + CnX n. Here we need n independent eigenvectors. 

2. Multiply each x i by eAi t to follow it forward in time. 

(17) 



320 Chapter 6. Eigenvalues and Eigenvectors 

Example 4 When you substitute y = eAt into y" - 2y' + y = 0, you get an equation 
with repeated roots: ).2 - 2). + 1 = 0 = (). - If. A differential equations course would 
propose et and tet as two independent solutions. Here we discover why. 

Linear algebra reduces y" - 2 y' + y = 0 to a vector equation for u = (y, y'): 

The eigenvalues of A are again). = 1,1 (with trace = 2 and detA = 1). The only 
eigenvectors.are multiples of x = (1,1). Diagonalization is not possible, A has only one 
line of eigenvectors. So we compute eAt from its definition as a series: 

Short series eAt = e lt e(A-l)t = e t [/ + (A - 1)t]. (19) 

The "infinite" series ends quickly because (A - 1)2 is the zero matrix! You can see tet 

appearing in equation (19). The first component of u(t) = eAt u(O) is our answer y(t): 

yet) = et yeO) - te t yeO) + te t y' (0). 

Example 5 Use the infinite series to find eAt for A = [-1 ~]. Notice that A4 = /: 

A S , A 6 , A 7 , A 8 will repeat these four matrices. The top right comer has 1,0, -1,0 
repeating over and over. The infinite series for eAt contains t /1!, 0, -t3/3!, O. 
Then t - kt3 starts that top right comer, and 1 - !t2 starts the top left: 

[ 

1 - 1t2 + ... 
/ + At + !(At)2 + k(At)3 + ... = ~ 3 

-t + -t - ... 
6 

On the left side is eAt. T~e top row of that matrix shows the series for cos t and sin t. 

1~~_~I~iili~! (20) 

A is a skew-symmetric matrix (AT = -A). Its exponential eAt is an orthogonal matrix. 
The eigenvalues of A are i and -i. The eigenvalues of eAt are e it and e-it . Three rules: 

1 eAt always has the inverse e-At . 

2 The eigenvalues of eAt are always eAt. 

3 When A is skew-symmetric, eAt is orthogonal. Inverse = transpose = e-At . 
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Skew-symmetric matrices have pure imaginary eigenvalues like A = i e. Then eAt has 
eigenvalues eWt . Their absolute value is I (neutral stability, pure oscillation, energy is 
conserved). 

Our final example has a triangular matrix A. Then the eigenvector matrix S is trian­
gular. So are S-l and eAt. You will see the two forms of the solution: a combination of 
eigenvectors and the short form eAt u(O). 

Example 6 Solve ~; = Au = [~ ;] u starting from u(O) = [~] at t = O. 

Solution The eigenvalues 1 and 2 are on the diagonal of A (since A is triangular). The 
eigenvectors are (1,0) and (1,1). The starting u(O) is Xl + X2 so Cl = C2 = 1. 
Then u (t) is the same combination of pure exponentials (no t eAt when A. = 1, 2): 

Solution to u' = Au u(t) = e
t [~ ] + e2t [~] . 

That is the clearest form. But the matrix form produces u(t) for every u(O): 

At -1 . [1 1] [e
t 

] [1 -1] [e
t 

u(t) = Se S u(O) IS 0 1 e2t 0 1 u(O) = 0 

That last matrix is eAt. It's not bad to see what a matrix exponential looks like (this is 
a particularly nice one). The situation is the same as for Ax = b and inverses. We don't 
really need A-I to find x, and we don't need eAt to solve duj dt = Au. But as quick 
formulas for the answers, A-1b and eAt u(O) are unbeatable. 

• REVIEW OF THE KEY IDEAS • 

1. The equation u' = Au is linear with constant coefficients, starting from u(O). 

2. Its solution is usually a combination of exponentials, involving each A. and x: 

Independent eigenvectors ( ) 
)Iolt A. t u t =Cle Xl+",+cne n x n . 

3. The constants Cl, ... , Cn are determined by u (0) = Cl XI + ... + CnX n = S c. 

4. u(t) approaches zero (stability) if every A. has negative real part. 

5. The solution is always u(t) = eAt u(O), with the matrix exponential eAt. 

6. Equations with y" reduce to u' = Au by combining y' and y into u = (y, y'). 
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• WORKED EXAMPLES • 

6.3 A Solve y" + 4y' + 3y = 0 by substituting eAt and also by linear algebra. 

Solution Substituting y = eAt yields (A 2 + 4A + 3)eAt = O. That quadratic factors into 
A 2 +4A + 3 = (A + I)(A + 3) = O. Therefore Al = -1 and A2 = -3. The pure solutions 
are YI = e-t and Y2 = e-3t . The complete solution CIYI + C2Y2 approaches zero. 

To use linear algebra we set u = (y, y ' ). Then the vector equation is u' = Au: 

dy / d t = y' d u [0 1] 
d '/d I converts to -d = 3 4 u. Y t = -3y - 4y t --

This A is called a "companion matrix" and its eigenvalues are again 1 and 3 : 

Same quadratic -A 1 2 
det(A - AI) = -3 -4 _ A = A + 4A + 3 = O. 

The eigenvectors of A are (1, Ad and (1, A2)' Either way, the decay in yet) comes from 
e-t and e-3t . With constant coefficients, calculus goes back to algebra Ax = AX. 

Note In linear algebra the serious danger is a shortage of eigenvectors. Our eigenvectors 
(1, Ad and (1, A2) are the same if Al = A2. Then we can't diagonalize A. In this case we 
don't yet have two independent solutions to du/ dt = Au. 

In differential equations the danger is also a repeated A. After y = eAt, a second 
solution has to be found. It turns out to be y = teAt. This "impure" solution (with an 
extra t) appears in the matrix exponential eAt. Example 4 showed how. 

6.3 B Find the eigenvalues and eigenvectors of A and write u(O) = (0, 2.j2, 0) as a 
combination of the eigenvectors. Solve both equations u' = Au and u" = Au: 

d [-2 1 0] ~ = 1 -2 1. u 
dt 0 1-2 

and 
d 2 [-2 1 0] d u . u 

d 
2 = 1 -2 1 u wIth -d (0) = o. 

t 0 1 -2 t 

The 1, -2, 1 diagonals make A into a second difference matrix (like a second derivative). 
u' = Au is like the heat equation ou/ot = o2u/oX2. 
Its solution u(t) will decay (negative eigenvalues). 
u" = Au is like the wave equation o2U/ot2 = 02U/OX2. 
Its solution will oscillate (imaginary eigenvalues). 

Solution The eigenvalues and eigenvectors come from det(A - AI) = 0: 

-2-A 
det(A - AI) = 1 

o 

1 
-2-A 

1 

o 
1 = (-2-A)[(-2-A)2 -2] = O. 

-2-A 
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One eigenvalue is A = -2, when -2 - A is zero. The other factor is A 2 + 4A + 2, so the 
other eigenvalues (also real and negative) are A = -2 ± ,J2. Find the eigenvectors: 

[! 1 !] [n = [~] forxj = U] l =-2 (A + 2l)x = 0 
1 

[f 
1 

~][~]=m forx2 = [-f] l = -2-..fi (A - Al)X = ,J2 
1 

[-~ 1 

-~]U]=m forx3 = [ 1 ] l = -2+ 4i (A -Al)X = ~ -,J2 
1 

The eigenvectors are orthogonal (proved in Section 6.4 for all symmetric matrices). 
All three Ai are negative. This A is negative definite and eAt decays to zero (stability). 

The starting u(O) = (0, 2,J2, 0) is X3 - X2. The solution is u(t) = eA3t X3 - eA2t X2. 

Heat equation In Figure 6.6a, the temperature at the center starts at 2,J2. Heat diffuses 
into the neighboring boxes and then to the outside boxes (frozen at 0°). The rate of heat 
flow between boxes is the temperature difference. From box 2, heat flows left and right at 
the rate Ul - U2 and U3 - U2. SO the flow out is Ul - 2U2 + U3 in the second row of Au. 

(=0 • (=0 • 

~. 
0 1 2 3 4 4 

t>O 

Figure 6.6: Heat diffuses away from box 2 (left). Wave travels from box 2 (right). 

Wave equation d 2u/ dt2 = Au has the same eigenvectors x. But now the eigenvalues A 
lead to oscillations eiwt x and e-iwt x. The frequencies come from ())2 = -A: 

becomes 

There are two square roots of -A, so we have eiwt x and e-iwt x. With three eigenvectors 
this makes six solutions to u" = Au. A combination will match the six components of u(O) 
and u' (0). Since u' = 0 in this problem, eiwt x combines with e-iwt x into 2 cos cut x. 



324 Chapter 6. Eigenvalues and Eigenvectors 

6.3 C Solve the four equations da/dt = O,db/dt = a,dc/dt = 2b,dz/dt = 3e 
in that order starting from u(O) = (a (0), b(O), e(O), z(O». Solve the same equations 
by the matrix exponential in u(t) = eAt u(O). 

Four equations 
A = 0,0,0,0 
Eigenvalues on 
the diagonal 

a 
d b 
dt e 

z 

o 0 0 0 
100 0 
020 0 
003 0 

a 
du 

is dt = Au. 
b 
e 
z 

First find A2, A3, A4 and eAt = I + At + !(At)2 + i(At)3. Why does the series stop? 

Why is it always true that (eA)(e A ) = (e 2A )? Always ~s times ~t is ~(s + t). 

Solution 1 Integrate da/dt = 0, then db/dt = a, then de/dt = 2b and dz/dt = 3c: 

aCt) = a (0) 
b(t) = taCO) + b(O) 
e(t) = t 2a(0) + 2tb(0) + c(O) 
z(t) = t 3a(0) + 3t2b(0) + 3tc(0) + z(O) 

The 4 by 4 matrix which is 
mUltiplying a(O), b(O), c(O), d(O) 
to produce a(t), bet), e(t), d(t) 
must be the same eAt as below 

Solution 2 The powers of A (strictly triangular) are all zero after A3. 

A= 

o 000 
1 000 
o 2 0 0 
003 0 

000 0 
000 0 
200 0 
060 0 

o 0 0 0 
o 0 0 0 
o 0 0 0 
6 0 0 0 

The diagonals move down at each step. So the series for eAt stops after four terms: 

1 

Same eAt 
(At)2 (At)3 

eAt = I + At + + ....:....-~ 
·26 

t 1 
t 2 2t 1 
t 3 3t 2 3t 1 

The square of eA is always e2A for many reasons: 

1. Solving with e A from t = 0 to 1 and then from 1 to 2 agrees with e2A from 0 to 2. 

2. The squared series (I + A + 12 + ... )2 matches I + 2A + (2~)2 + ... = e2A . 

3. If A can be diagonalized (this A can't!) then (SeA S-l )(SeAS-1) = Se2A S-l. 

But notice in Problem 23 that e413 and 13 e4 and e4 + B are all different. 
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Problem Set 6.3 

1 Find two .A's and x's so that u = eAt x solves 

du [4 3] dt = 0 1 u. 

Whatcombinationu = CleArtxI +c2eA2tx2 startsfromu(O) = (5,-2)? 

2 Solve Problem 1 for u = (y, z) by back substitution, z before y: 

dz 
Solve - = z from z(O) = -2. 

dt 

dy 
Then solve dt = 4y + 3z from yeO) = 5. 

The solution for y will be a combination of e4t and et . The .A's are 4 and 1. 

3 (a) If every column of A adds to zero;why is .A = 0 an eigenvalue? 

(b) With negative diagonal and positive off-diagonal adding to zero, u' = Au 
will be a "continuous" Markov equation. Find the eigenvalues and eigenvec­
tors, and the steady state as t -+ 00 

Solve ~; = [-; _;] u with u(O) = [~l What is u(oo)? 

4 A door is opened between rooms that hold v(O) = 30 people and w(O) = 10 people. 
The movement between rooms is proportional to the difference v - w: 

dv 
-=w-v 
dt 

and 
dw 
dt = v - w. 

Show that the total v + w is constant (40 people). Find the matrix in d u / d t = Au 
and its eigenvalues and eigenvectors. What are v and w at t = 1 and t = oo? 

5 Reverse the diffusion of people in Problem 4 to d u / d t = -Au: 

dv 
-=v-w 
dt 

and 
dw 
dt = w -v. 

The total v + w still remains constant. How are the .A's changed now that A is 
changed to -A? But show that vet) grows to infinity from v(O) = 30. 

6 A has real eigenvalues but B has complex eigenvalues: 

A--[al al] B-_[bl -bI] (a and b are real) 

Find the conditions on a and b so that all solutions of d u / d t 
dv/dt = Bv approach zero as t -+ 00. 

Au and 
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7 Suppose P is the projection matrix onto the 45° line y = x in R2. What are its 
eigenvalues? If du/dt = -Pu (notice minus sign) can you find the limit of u(t) at 
t = 00 starting from u(O) = (3, I)? 

8 The rabbit population shows fast growth (from 6r) but loss to wolves (from -2w). 
The wolf population always grows in this model (_w2 would control wolves): 

dr 
- = 6r -2w 
dt 

and 
dw 
-=2r+w. 
dt 

Find the eigenvalues and eigenvectors. If reO) = w(O) = 30 what are the popula­
tions at time t? After a long time, what is the ratio of rabbits to wolves? 

9 (a) Write (4,0) as a combination CIXI + C2X2 of these two eigenvectors of A: 

(b) The solution to du/dt = Au starting from (4,0) is Cleitxl + C2e-itx2. 
Substitute eit = cos t + i sin t and e-it = cos t - i sin t to find u(t). 

Questions 10-13 reduce second-order equations to first-order systems for (y, y'). 

10 Find A to change the scalar equation y" = 5y' + 4y into a vector equation for 
u = (y, y'): 

du [Y'] [ 
dt = y" = ] [;,] = Au. 

What are the eigenvalues of A? Find them also by substituting y = eAt into y" = 
5y' + 4y. 

11 The solution to y" = 0 is a straight line y = C + Dt. Convert to a matrix equation: 

d [y] [0 1] [y ] . [y ] At [y (0) ] dt y' ", 0 0 y' has the solutIOn y' = e y/(O)' 

This matrix A has A = 0,0 and it cannot be diagonalized. Find A2 and compute 
eAt = I + At + !A2t2 + .... Multiply your eAt times (y(O), y'(O») to check the 
straight line yet) = yeO) + y'(O)t. 

12 Substitute y = eAt into y" = 6y' - 9y to show that A = 3 is a repeated root. This 
is trouble; we need a second solution after e3t . The matrix equation is 

Show that this matrix has A = 3,3 and only one line of eigenvectors. Trouble here 
too. Show that the second solution to y" = 6y' - 9y is Y = te3t . 

Jason
高亮

Jason
高亮
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13 (a) Write down two familiar functions that solve the equation d 2y/dt2 = -9y. 
Which one starts with yeO) = 3 and y'(O) = O? 

(b) This second-order equation y" = -9y produces a vector equation u' = Au: 

d u [ y' ] [0 1] [y ] dt = y" = -9 0 y' = Au. 

Find u(t) by using the eigenvalues and eigenvectors of A: u(O) = (3,0). 

14 The matrix in this question is skew-symmetric (AT = -A): 

~ = -c 0 a u 
d [0 C -b] 
dt b -a 0 

or 
U'I = CU2 - bU3 
'-u2 - aU3 - CUI 

u; = bUI - aU2. 

(a) The derivative of Ilu(t)f = ui + u~ + u~ is 2UIU~ + 2U2U; + 2U3U;. 
Substitute u~, u;, u; to get zero. Then Ilu(t) 112 stays equal to Ilu(O) 112. 

(b) When A is skew-symmetric, Q = eAt is orthogonal. Prove QT = e-At from 
the series for Q = eAt. Then QT Q = I. 

15 A particular solution to d u / d t = Au - b is up = A-I b, if A is invertible. The 
usual solutions to du/dt = Au give Un. Find the complete solution u = up + Un: 

du 
(a) - = u-4 

dt 

16 If C is not an eigenvalue of A, substitute u = ect v and find a particular solution to 
du/dt = Au - ectb. How does it break down when C is an eigenvalue of A? The 
"nullspace" of d u / d t = Au contains the usual solutions eA; t Xi. 

17 Find a matrix A to illustrate each of the unstable regions in Figure 6.5: 

(a) Al < o and A2 > 0 (b) AI> OandA2 > 0 (c) A = a ± ib with a > O. 

Questions 18-27 are about the matrix exponential eAt. 

18 Write five terms of the infinite series for eAt. Take the t derivative of each term. 
Show that you have four terms of AeAt . Conclusion: eAt Uo solves u' = Au. 

19 The matrix B = [8 -~] has B2 = O. Find eBt from a (short) infinite series. 

Check that the derivative of eBt is BeBt . 

20 Starting from u(O) the solution at time T is eAT u(O). Go an additional time t to 
reach eAt eAT u(O). This solution at time t + T can also be written as __ 
Conclusion: eAt times eAT equals __ 

21 Write A = [A ~] in the form SAS-1• Find eAt from SeAt S-I. 

Jason
高亮
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22 If A2 = A show thatthe infinite series produces eAt = 1+ (et -l)A. For A = [~~] 
in Problem 21 this gives eAt = __ 

23 Generally eAeB is different from e B eA. They are both different from e A + B. 
Check this using Problems 21-22 and 19. (If AB = BA, all three are the same.) 

A = [~ ~] A+B=[~ ~]. 

24 Write A = [~~] as SAS-1. Multiply SeAt S-1 to find the matrix exponential eAt. 

Check eAt and the derivative of eAt when t = O. 

25 Put A = [~~] into the infinite series to find eAt. First compute A 2 and AS: 

At=[1 O]+[t 3t]+1[ e 0 1 0 0 2 ]. 
26 Give two reasons why the matrix exponential eAt is never singular: 

(a) Write down its inverse. 

(b) Write down its eigenvalues. If Ax = AX then eAt x = x. 

27 Find a solution x(t), yet) that gets large as t -+ 00. To avoid this instability a 
scientist exchanged the two equations: 

dx/dt = Ox - 4y 
dy/dt = -2x + 2y 

becomes 
dy/dt = -2x + 2y 
dx/dt = Ox - 4y. 

Now the matrix [-~ _~] is stable. It has negative eigenvalues. How can this be? 

Challenge Problems 

28 Centering y" = -y' in Example 3 will produce Yn+1 - 2Yn + Yn- 1 = -(6.t)2Yn. 
This can be written as a one-step difference equation for U = (y, Z): 

Yn+1 = Yn + 6.t Zn 
Zn+l = Zn - 6.t Yn+l [ 1 0] [ Yn+1 ] = [1 6.t] [ Yn ] 

6.t 1 Zn+l 0 1 Zn 

Invert the matrix on the left side to write this as U n+l = AU n. Show that det A = 1. 
Choose the large time step 6.t = 1 and find the eigenvalues Al and A2 = Al of A: 

A = [_! ~] has 1111 = 1121 = 1. ShowthatA6 is exactly I. 

After 6 steps to t = 6, U 6 equals U o. The exact y = cos t returns to 1 at t = 2rr. 

Jason
高亮
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29 That centered choice (leapfrog method) in Problem 28 is very successful for small 
time steps fl.t. But find the eigenvalues of A for fl.t = ,J2 and 2: 

Both matrices have IAI = 1. Compute A4 in both cases and find the eigenvectors 
of A. That value fl.t = 2 is at the border of instability. Time steps fl.t > 2 will lead 
to I A I > 1, and the powers in Un = An U 0 will explode. 

Note You might say that nobody would compute with fl.t > 2. But if an atom 
vibrates with y" = -lOOOOOOy, then fl.t > .0002 will give instability. Leapfrog has 
avery strict stability limit. Yn+ l = Yn+3Zn andZn+1 = Zn-3Yn+1 will explode 
because fl.t = 3 is too large. 

30 Another good idea for y" = -y is the trapezoidal method (half forwardlhalf back): 
This may be the best way to keep (Yn , Zn) exactly on a circle. 

Trapezoidal [ 
1 -fl.t /2 ] [ Yn+l ] = [ 1 fl.t /2 ] [ Yn ]. 

fl.t /2 1 Zn+l -fl.t /2 I Zn 

(a) Invert the left matrix to write this equation as U n+l = AU n. Show that A is 
an orthogonal matrix: AT A = I. These points Un never leave the circle. 
A = (1- B)-I(1 + B) is always an orthogonal matrix if BT = -B. 

(b) (Optional MATLAB) Take 32 steps from U 0 = {l, 0) to U 32 with fl.t = 2n /32. 
Is U 32 = U o? I think there is a small error. 

31 The cosine of a matrix is defined like eA , by copying the series for cos t: 

1 2 1 4 
cos t = 1 - - t + - t 

2! 4! 
1 2 1 4 cos A = I - - A + - A - ... 

2! 4! 

(a) If Ax = AX, multiply each term times x to find the eigenvalue of cos A. 

(b) Find the eigenvalues of A = [= =] with eigenvectors (1, 1) and (1, -1). 

From the eigenvalues and eigenvectors of cos A, find that matrix C = cos A. 

(c) The second derivative of cos(At) is _A2 cos(At). 

d 2u 
u(t) = cos(At) u(O) solves dt2 = -A2u starting from u' (0) = O. 

Construct u(t) = cos(At) u(O) by the usual three steps for that specific A: 

1. Expand u(O) = (4,2) = CIX I + C2X2 in the eigenvectors. 
2. Multiply those eigenvectors by and (instead of eAt). 

3. Add up the solution u(t) = CI Xl + C2 X2. 




